############################################################
### Aggregate prediction ###
############################################################
library(data.table)
library(ggplot2)
library(devtools)
load_all()
# State of the world including variables for precise match #############
sotw_cont <- subset(bikes_d_log, select = c(t, temp, hum, windspeed))
matchi <- data.frame(t = 1:730, family_day = 0)
matchi[c(327, 357:358, 691, 723:724), 2] <- 1
# Generate agg preds including baseline ################################
df_agg <- gen_atomic_df()
df_base <- gen_baseline(bikes_atom, 401)
df_agg <- rbind(df_agg, df_base)
weights <- caliper_relevance_new(
bikes_atom,
sotw_cont,
670,
cw = 1,
matching_vars = NULL #matchi
)
RAL_data <- RAL_calculator(weights, bikes_atom)
df_cal_prop <- gen_RAA(RAL_data, "propto", "caliper")
df_agg <- rbind(df_agg, df_cal_prop)
# Vis ##################################################################
plt <- ggplot(df_agg[t > 670], aes(x = t, y = lpdens, col = method)) +
geom_line()
ggsave("temp-bikes/agents/lpdens_all_no_match.pdf", plot = plt)
# saving data for fata
df_match <- df_agg
df_agg[, .(predabil = sum(lpdens)), by = .(method)]
df_match[, .(predabil = sum(lpdens)), by = .(method)]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.